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Abstract 

In this project, we propose a comprehensive study for object description using multi- 
sensors. The study will examine two basic scenarios for surface reconstruction. The first 
scenario provides a 2D- to-3D mapping from images to surfaces, and will include stereo, 
focus, zoom, vergence, shape from shading, and shape from texture. The second scenario 
will use active range finders to provide direct depth information about the object, i.e., will 
provide a 3D-to-3D mapping. The research will focus on the representation and fusion of 
information from differing imaging sources and the use of machine learning techniques to 
perform the fusion. Psychophysical studies will include investigating the applicability of the 
recently introduced "quasi 2D coding hypothesis for 3D surface representation" in machine 
vision; and the behavioral evaluationof human performance with 3-D fused imagery. 

As an application of the proposed research, and in order to evaluate the ideas proposed, 
we plan to create a "vision environment" that will allow the integration of multiple cues 
to sense, explore, and reconstruct the environment layout. The system will enable testing 
of the latest theories in human and machine perception, and will enable the integration 
of multisensor data for tracking, probing, and re-evaluating reconstructions, in order to 
provide an accurate assessment of the environment layout. The proposed system will be a 
great research and educational asset for studies in human, computer, and robot vision in the 
coming decade. 

This project will enable the investigators to achieve two main goals: First, the grant will 
forge ties between vision researchers in several departments at the University of Louisville 
and at the University of Kentucky. Second, funding will support an interdisciplinary research 
effort investigating the representation of 3-D surface information; an important cutting-edge 
topic in both human and computer vision with important applications for military, manufac- 
turing and medical areas. In addition, the grant will significantly improve the infrastructure 
for vision research at the University of Louisville by providing support for students, staff, 
and postdoctoral research fellows. 

This technical report describes the research conducted at the Computer Vision and Image 
Processing Laboratory (CVIP Lab) of the University of Louisville during the funding period 
of this grant. In particular, we focus on the problem of 3D object reconstruction, and describe 
the CardEye active vision system that has been created at the CVIP Lab as a result of this 
project. 
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Chapter 1 

Introduction 

Vision is inherently three-dimensional. Because the majority of practical sensors provide 
only two-dimensional information (e.g., CCD Cameras), considerable research has been con- 
ducted to extract 3-D information from 2-D data. This is commonly known as the Shape 
from X problem in the computer vision literature, where X includes such paradigms as stereo, 
shape from shading, shape from motion, etc. Some sensors exist which can provide direct 
3-D depth measurements (e.g., laser scanners) but they are usually limited to specialized 
environments and objects. Yet, creating a 3-D reconstructions (models) of an environment 
is an essential step in the applications of computer/machine vision. Based on these mod- 
els, important tasks such as object recognition, tracking and navigation can be accomplished. 

The 3D model builder (figure 1.1) consists of three phases: Data Aquisation, Data Pre- 
processing, and Surface Reconstruction. The data aquisation phase provides the computer 
with information about the physical object. The input to this phase can come from four 
different scenarios: stereo vision, shape from shading, 3D laser digitizer or Computerized To- 
mography (CT). The data preprocessing phase is incorporated in each technique, to facilitate 
the process of surface reconstruction. In a stereo vision system, features from a sequence of 
images are extracted and used in the surface fitting phase. Shape from shading estimates 
the depth of the image pixels based on the grey level of these pixels. The data obtained 
from the laser digitizer contains redundant information that has to be eliminated. The CT 
slices are segmented to mark the object that is needed to be reconstructed. The third phase 
in the 3D model builder is to fit a surface to the processed data. This phase is known in the 
computer vision field as trianglization or surface fitting. However, in the shape from shading 
technique, one may use multiple views for the same object, to get a complete description of 
the surface. In order to get a 3D model for the whole object, different views of the object 
are registered. This process of registration can be applied to the images or to the 3D model 
of each view. 

In this report, we will focus on a number of stereo-based model building tcheniques. 
Identifying the same features among different views (the correspondence problem) is the 
main problem in stereo imaging. Several stereo approaches have been developed to tackle 
the correspondence problem, which can be categorized into two main categories: edge-based 
and area-based stereo. 
In edge-based stereo, the correspondence problem is solved by matching the edge informa- 
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Figure 1.1: Overview of the 3D model builder. 

tion in the different views. Various forms of edges have been considered such as points [16], 
straight line segments [4, 18], curves [48], and occluding edges [43]. This approach can gener- 
ate an accurate reconstruction for the object. However, the reconstructed data is sparse and 
often not sufficient to build a 3-D model for the object. In area-based stereo, the matching 
process is applied to homogeneous grey level regions (e.g., [39]. This approach generates a 
dense depth map but, the reconstructed data is less accurate than the edge-based approach. 
A number of techniques have been developed for the integration of edge-based and region- 
based stereo (e.g., [15, 51, 20, 19, 17]). 
As object surfaces do not often show sufficient texture (feature), stereo-based techniques are 
likely to fail to handle such objects. Structured light is a well-known method for introduc- 
ing artificial features on surfaces. Integrating stuctured light with stereo will improve the 
performance of the reconstruction technique. 

On the other hand, stereo unfortunately is difficult to apply to images taken from arbi- 
trary viewpoints. Model building techniques that exploit a sequence of images taken of an 
object from different views have been proposed, e.g., Voxel Coloring [36], Space Carving [23] 
and Generalized Voxel Coloring (GVC) [9]. In this report, we also describe our apporach for 
model building based on the space cariving algorithm. 

Two chapters of the report are dedicated to discuss stereo-based techniques and the space 



carving approach. Then two applications ofthese methods are described, a trinocular active 
vision system used for model building and a vision system for human jaw reconstruction 
from a sequence of intra-oral images. 



Chapter 2 

Stereo-based Techniques 

One way in which humans perceive depth is through a process called binocular stereopasis or 
stereo vision. Stereo vision uses the images viewed by each eye to recover depth information 
in a scene. A point in the scene is projected into different locations in each eye, where the 
difference between the two locations is called the disparity. Using geometric relationships 
between the eyes and the computed disparity value, the depth of the scene point can be 
calculated. Stereo vision, as used in computer systems, is similar. In stereo vision, different 
views of the object are acquired. By identifying the same features among these views, 
the depth of these features can be estimated, provided that the camera parameters are 
known. Identifying the same features among different views (the correspondence problem) 
is the main problem in stereo imaging. Several stereo approaches have been developed to 
tackle the correspondence problem. Figure 2.1 depicts different techniques to establish stereo 
corrspondences. These approaches can be categorized into two main categories: edge-based 
stereo and area-based stereo. 

In edge-based stereo, researchers have tried to match the edges in different views. Dif- 
ferent forms of edges have been considered such as points [16], straight line segments [4, 18], 
curves [48, 26], and even occluding edges [43, 35]. This approach generates an accurate 
construction for the object. However, the reconstructed data is sparse and it is not sufficient 
to build a 3D model for the object. 

In area-based stereo, researchers have tried to match regions in different views. The 
matching process has been applied to homogeneous grey level regions (patches) assuming 
that the object is composed of planar patches [41, 39]. Other techniques [11] use the grey 
level similarity between points in the different views of the object. The grey level similarity 
is defined by a correlation factor that takes into consideration the grey level variations 
between different views of the object. This approach generates a dense depth map but, the 
reconstructed data is less accurate than the edge-based approach. 

An integration between edge-based and area-based stereo improves the reconstruction 
accuracy and richness. This is what many researchers have realized and have proposed 
different integration approaches. Fua [14, 15] proposed to use shape from shading and stereo- 
based reconstruction in an iterative way to help the stereo in recovering depth information 
over smooth surfaces where no edges are defined. Yingen [51] starts with an edge-based 
stereo reconstruction and uses an area-based stereo to recover more depth information at 
non-edge points. 
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Figure 2.1: The different techniques for stereo correspondences. 

Although, there are many integration approaches that utilize the merits of edge-based 
and area-based approaches, stereo, as a passive vision technique, is not capable of providing 
a robust and sufficient 3D map of the environment in all situations. The meaning of passive 
vision is that there is no control over the acquisition system or the lighting device. The 
orientation of the cameras, the zooming, or the focus cannot be changed. Controlling the 
acquisition system improves the image quality and as a result improves the reconstruction 
performance. Controlling the lighting device enable the vision system to deal with featureless 
objects by introducing artificial features in the scene. Controlling these parameters is what 
has been defined as "Active Vision" [40]. 

We developed a multi-stage surface reconstruction technique that is employed to handle 
different surface characteristics. The proposed technique integrates edge-based stereo and 
area-based stereo to combine the accuracy of the former and the richness of the latter, and 
employ the structured light to reconstruct feature-less and smooth objects that cannot be 
handled using edge- or area-based stereo. The integration is performed by reconstructing 
the actual and induced edges in the scene using the geometrical constraints of trinocular 
vision, followed by the application of the continuity and the epipolar constraints to grow 
the surface in the vicinity of the reconstructed edges. Our approach demonstrates that the 
integration of the three techniques: structured light, edge- and area-based stereo, enables 
the system to handle different surface characteristics. Fig. 2.2 shows the different modules 
of the multi-stage reconstruction technique. 

First, three images of the scene are snapped and used as reference images Ir = {I'r, I'r', I'r"}. 
An edge detection technique [18] is used to extract the straight line segments Sr = {S'r, S", S'r"} 
in the reference images. The pattern generator projects a laser line on the scene to create 
artificial features. Another three images of the scene is snapped and the introduced features 
are extracted using a thresholding technique. The fan out effect of the laser beam creates a 
blurred pattern, therefore a thinning technique is used to localize the projected pattern. The 
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Figure 2.2: The different modules of the multi-stage surface reconstruction. 

epipolar constraints are used to match the pattern from the three images and obtain a set of 
matched triplets. The process of projecting and matching a laser pattern is repeated for dif- 
ferent projection planes. The orientation of the projection planes is automatically controlled 
and the step size is selected by the user. The sets of match obtained from each projection 
plan are combined in one set Ai composed of triplets of match points {A'„ A", A',"}. A 
matching test is applied to the straight line segments nearby the projected patterns. The 
matched line segments are added to the set of match Ai. Also the matched line segments 
are subtracted from the extracted line segments Sr to obtain the residual S of the extracted 
line segments. An edge-based stereo technique is applied to the residual S of the extracted 
line segments. The technique builds another set of triplet match Ae, which is combined 
with the structured light set of match Ai. The combined set of match is used to guide a 
correlation matching technique. The correlation technique is used to match the gap points 
(i.e., unmatched points located between matched points along the epipolar lines) and grow 
a surface around the matched points. The final output is a dense set of match points A 
that can be represented as a disparity map or projected onto the cyclopean camera to obtain 
the cyclopean view Ic. A filling technique is used to fill the gaps that may appear in the 
cyclopean view. 
The different modules are described in more details in the following sections. 

11 
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Figure 2.3: Schematic diagram of the structured light reconstruction technique 

2.1    Stage I: Structured light reconstruction 

As surfaces do not often show sufficient texture (feature), many reconstruction techniques 
rely on introducing artificial features in the scene. Structured light is a well-known method 
for creating such features. The basic idea of structure light method is to project a pattern 
of light (grids, stripes, elliptical pattern, etc.) onto an object. These patterns are distorted 
by the object surface. The distorted pattern is used to deduce the surface shape [44, 10, 27]. 
In our approach, we used a straight line laser pattern. Generally, the pattern is projected 
as thick lines. For proper localization of the pattern, preprocessing of the pattern is needed 
before reconstruction. An overview of the surface reconstruction using structured light is 
shown in Fig. 2.3. First, the pattern is extracted from the image using simple subtraction 
and thresholding techniques. The medial axis of the pattern is extracted using an automatic 
medial axis pruning technique [30]. The epipolar constraints are used to match the medial 
axis of the extracted pattern and obtain a set Ai of match triplets {A[, A", A'/'}. In the 
following sections, we discuss the medial axis transform and the matching technique. 

2.1.1    Medial Axis Transform (MAT) 

The MAT of a shape is the locus of the centers of all maximal discs contained in the shape. 
A maximal disc contained in the shape is any circle with its interior that is contained in the 
shape (i.e., has empty intersection with the exterior of the shape) such that the circle touches 
the boundary of the shape at two or more points. Equivalently, for each interior point of the 
shape, consider the set of boundary points closest to it. Then the MAT of the shape is the 
set of all those interior points of the shape that have at least two closest boundary points. 
The medial axis extraction has three processes. The first process is extracting the object 
boundaries from a binary image and encoding them as a polygonal chain whose vertices are 
the endpoints of 'raster cracks,' the elementary straight line segments separating black and 
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white pixels. The second process is computing the Voronoi tessellation (Euclidean metric) 
of the polygonal chain. Finally, the medial axis is extracted from the Voronoi diagram [30]. 

2.1.2    Matching Technique 

The matching technique employs the well known stereo geometric constraint, the epipolar 
constraint. The epipolar constraint between two points m' 6 I' and m" € I" is represented 
in the following form: for m' to be a match for m", then the following equation should be 
satisfied: 

m"T  F  m'= 0 (2.1) 

where F is the fundamental matrix that relates image I' to I". However, due to inaccuracy 
of the camera calibration, the previous equation does not have exactly zero on its right-hand 
side. The epipolar equation is modified to be 

|m"T  F  m'| < e (2.2) 

where e depends on the accuracy of the measurements and camera calibration and m is the 
augmented vector of m. The previous equation does not measure a physical quantity so we 
modify it to the following form: 

^'^'"SrTf1-' (2-3) 
where V1,Y2 are components of the epipolar line of m" which is given by 1' = Fm" = 

[1^, lg, I3]- The modified form of the epipolar constraint measures the physical distance 
between the point m' and the epipolar line 1' of m". Similar formulas are constructed for 
the pair (m' € I', m'" € I'") and the pair (m" € I", m'" E V"). In the case of three cameras, 
a triplet of match (m', m", m'") is accepted only if the epipolar constraints is fulfilled in the 
three pairs. 

Since we are using a vertical laser line, the matching can be performed between two images 
only. However, we are using the third camera to improve the accuracy of the reconstruction 
process. We employ the match obtained from artificial features in matching actual edges. If 
there is an intersection between the set of match Ai and the extracted line segments Sr, then 
the line segments Si pass through this intersection is in match if they fulfill the matching 
criteria defined in the next section. Then the matched line segment Si is added to the set 
of match Ai and subtracted from the extracted line segments Sr. The matching algorithm 
is outlined in Algorithm 1. 

13 



Algorithm 1 An outline of the structured light matching algorithm  
Input : 
three sets of 2D pattern points m', m", m'" 
three sets of extracted line segments S'T, S'r', S" 
Output: 
A set of triplet match Ai 
Algorithm: 
for all m = (m';,m.j', m£') e (m', m", m'"), respectively, do 

if Epipolar (m';, m", m'") then 
if Intersecting, m'/, m!"), (S;, S'r', S?')) then 

Let 1' E S'r be the line that passes by m';. Similarly 1" and 1'", 
if Match{V, I", V") then 

Let S, = (sj, sj', si") = CommonSegment(l', 1", 1'"), A, = A, |J S, (J m 

end if 
else 

A,-A, Um 
end if 

end if 
end for  

In Algorithm 1, Epipolar (m[,m.",m.'") is true only if the epipolar constraints is fulfilled 
in the three pairs (m',m"), (m',m'") and (m",m'"), Intersect{(m'i, m'/, mi"), (S^S?, S™)) 
is true only if Distance(m, S) < e in the three images. The distance is computed as follows: 

Distance(m, S) = I    . ™        I (2.4) VsfTsf 
where (Si,S2,S3) is the normalized components of the line S. In the EpipolarQ and 

the Intersection^) functions, we consider the threshold to be 0.5 pixel. The MatchQ and 
CommonSegmentQ are discussed in the next section. 

2.2    Stage II: Edge-based reconstruction 

Many stereo vision algorithms have been developed to estimate surfaces from stereo images 
of a scene acquired using a fixed, known camera configuration. The paradigm used in most of 
these algorithms consists of three main phases: feature detection, feature matching and depth 
estimation. In our case, the used features are straight line segments. The line segments, as 
high level features, speed up the matching process by compressing the search space. In the 
same time, they enable us to use the geometric features attached to them such as spatial 
orientation. The accuracy and the reliability of the line segment matching counterbalances 
the disadvantage of reconstructing few points [12]. 

The theme of our work is similar to Ayache's work [4]. Both fall under the category of 
prediction and verification techniques, as classified by Faugeras [12]. However, our approach 
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Figure 2.4: Schematic diagram of the line segments reconstruction technique 

differs from Ayache's approach in three points. First, we work directly on the obtained, 
unrectified images to avoid the distortion results from rectifying the images. Second, we 
do not consider the relative length of the line segments as a matching criterion. Thus, our 
approach can handle the foreshortening problem. Third, we eliminate the dependency on 
predefined thresholds by verifying the matching using a global optimization process. 

Fig. 2.4 shows an overview of our edge-based reconstruction technique. The matching 
process runs iteratively on the residual of the extracted line segments. The first iteration 
tries to match all the line segments while the other iterations consider only those segments 
that failed to be matched in previous iterations. The iterative process continues until no 
more matches are found between the segments. In our experiments, we found that three 
iterations were often enough for the matching. The last process of the system is to lump all 
the line segments together before reconstructing their end points then their corresponding 
3-D line segments. 

In this paper, we present a brief discussion of the edge-based stereo. More details can be 
found in [18]. The discussion is organized into three subsections the geometrical constraints 
of the trinocular vision system, the matching algorithm and the validation process. 

2.2.1    The Geometrical Constrains 

The trinocular vision system has rich geometrical constraints that can be used to faithfully 
reconstruct the 3-D environment. However, the accuracy of detected features and the cal- 
ibration process weaken the importance of these constraints. In order to efficiently utilize 
the geometrical constraints, the uncertainties of image measurements should be taken into 
consideration. 

In this section, we present the essential geometrical constraints that are related to straight 
line segments. For each constraint, we discuss the effect of the uncertainty. 
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Figure 2.5:   The uniqueness constraint.   If m'jiiij matches rnjin'^ then they match also 
mW 

2.2.1.1 Uniqueness 

If two 2-D lines from two images form a match, then there is at most one line in the third 
image that matches these two lines. The uniqueness constraint is known as the trifocal 
constraint [50]. As shown in Fig. 2.5, if räim2 G I matches mim'2 G V, then_nV{m2 G I" is 
the projection of MxJV^ in image I". Due to uncertainty, the projection of MXM2 lies just 
in the vicinity of mjm'j and not at its exact location. 

2.2.1.2 Projection 

Every 3-D straight line segment is projected as a straight line in the image. As shown in 
Fig. 2.6 (left), mim'2 is the projection of MXM2 in image I'. However, due to the uncertainty 
of feature detection, MXM2 may have a projection as two lines, m'/mj and m'^ih^, or more. 

2.2.1.3 Back Projection 

A 2-D line segment can be a projection of more than one 3-D line segment. As shown in 
Fig. 2.6 (right), mim^ is the projection of two lines MiM2, M3M4. However, this issue is 
resolved by projecting the 3-D line using different views. 

2.2.1.4 Epipolar Constraint 

If two 2-D line segments from two images form a match, then their end points must obey 
the epipolar constraint. The epipolar constraint is represented in its modified form, Eq. 2.3. 

2.2.2    The Matching Algorithm 

The matching algorithm employs the geometrical constraints discussed above in building 
a set of triplets of matched line segments Ae = (S', S", S'") of the residual line segments 
S = {(S'), (S"), (S")}. The strategy of the algorithm is to match all the combinations of line 
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Figure 2.6: (left) The projection constraint. A 3-D line segment may be projected as one or 
two line segments, (right) The back projection constraint. Two 3-D line segments may be 
projected as one segment 

segments (S', S", S'") from the three images. A triplet of match is accepted only if it obeys 
the geometrical constraints. Algorithm 2 outlines the line segments matching algorithm. 

Algorithm 2 An outline of the line segments matching algorithm 

z = 4, 
for all s' € S' do 

IT' = VisualPlane(s', C), 
for all s" e S" do 

TT" = VisualPlane(s",C"), 
S3 = InterSectTwoPlanes(ir'',7r"), 
S3 = Project^, C"), 
for all s'" € S'" do 

ifTestMatch(s3,s'") then 
Z = Z \JCommonSegment(s', s", s'") 

end if 
end for 

end for 
end for 

In Algorithm 2, the functions VisualPlaneQ and IntersectTwoPlanesQ are described 
in the Appendix. The function ProjectQ projects the end points of the line segments. The 
function TestMatch{s3,s'") performs the following test: 

1. |74n^e(s3,s'")| < ci, 

2. \Distance(sa,s'")\ < e2, 

3. CommonSegment(s', s",s'") ^ (j). 

Thus, for a triplet (s',s",s'") to be a candidate match, the corresponding line segment of 
s',s" in /'", which is s3, should have similar orientation as s'" and lie in the vicinity of s'" 
and there should be a common segment between (s', s", s'")- The first two conditions results 
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from the uniqueness constraint in the presence of noise due to the calibration process. The 
common segment condition (computed in Algorithm 3) results from the epipolar constraint. 

Algorithm 3 An outline of the CommonSegmentQ function 
Represent the line segments by their end points, then, s' = (m'^my, s" = (m'^m'g) and 
sm = K1m»')I 

Let the reference image 1 = 1', 
Let p'x = m'1; 

Let \'[ be the epipolar line of point p'x in I", 
Let I"' be the epipolar line of point p'j in I'", 
if Intersect^, s") = p'^ <f> AND Intersect!??, s'") = p™ ^ <j> then 

(p'j, p'j, p'x") are end points of the common segment, 
else 

Let the reference image I = I" and p" = m" OR 
Let the reference image I = I'" and p'^' = m'" 
Repeat the above steps to get (p'l5 p", p'{') 

end if 
Repeat for (p^p'^p'z')  

The matching algorithm starts by assuming that two lines, s' G S' and s" G S", are 
corresponding to each other, which is not true. Hence, the output of this process is a set of 
triplets of line segments that have false and also true matches. The disambiguation of these 
matches is handled using the following validation process. 

2.2.3    The Validation Process 

The concept behind our validation process is the fact that if the end points on the line 
segments are matched, then their line segments are also matched. Based on this observation, 
the validation process is reduced to a matching task between the end points of the line 
segments. 

The line segments are matched based on a similarity measure between their end points. 
The similarity measure is a correlation score computed in the neighborhood of each pair of 
points. For the triplet (s', s", s"') where their end points are denoted by (m^m^, m'/m'^, m£'m£'). 
The matching score is computed as follows: 

Scor e(s',s",s'") = - Similarityim!^ m'^m"') + 

-Similarity(m'2, m.2,m.2) (2.5) 

where 

Similarity(m', m", m"') = -Cor(m', m") + 
o 

icor(m', m'") + \cor{m", m"') (2.6) 
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Cor(m',m")= 1 

(2JV + 1)(2M + l)y/a2(I') X(J2(I") 
JV M 

5Z £ [iv+i.w'+j)-1'^'.«' 
i——N j=—M 

[l'V + i,v" + i) - I"(«", u")] (2-7) 

where TV, M are the half length and width of correlation window, respectively, I'(u', v') 
(Similarly I"(u",v")) is the average at point {u',v') of I' 

and is given by: 

1 (tt 'V) = (2iV + l)(2M + l)  (2-8) 

and a(I') (Similarly a(I")) is the standard deviation of the image I' in the neighborhood 
(2JV + 1) x (2M + 1) of (u', v'), which is given by 

'£f=-„£"-„rV+ >,»' + ;) 

The matching score is in the range [-1, 1], where -1 denotes a bad match and 1 denotes 
a very strong match. 

Matching the end points is performed in two steps. In the first steps, we compute the 
matching score (Eq. 2.5) for each triplet of match. In the second step, the matching score is 
optimized subject to the uniqueness constraint. Applying the uniqueness constraint in the 
optimization process means forcing the matching triplets to have a unique representation of 
line segments. Fortunately, the search space for our task is small, and it can be an exhaustive 
search could be applied to guarantee optimum solution. 

Based on the back projection constraint, the matching and validation process builds a 
set of triplets of matched line segments where each line entry can be a partial segment of 
the original line segment. As a consequence, we build another set of line segments that is 
the difference between the matched line set and the extracted line sets. The matching and 
validation process is applied iteratively to the new line segments set. The iteration process 
is finished when it fails to match new line segments. 

At this stage, we have a set of triplets of matched segments (Si,S2,S3). Using the 
camera parameters, we reconstruct the 3-D correspondence of the matched line segments. 
The reconstruction process is simplified by constructing only the end points of the line 
segments. This is based on the projection constraint and the fact that straight lines are well 
defined by their end points. 

2.3    Stage III: Surface Growing 

The strategy of the surface growing process is based on the continuity constraint [12]. The 
basic idea of this constraint is that the world is mostly made up of objects with smooth 
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surfaces. This means that the reconstruction function, which assigns to a triplet of matched 
points a 3D point M, is smooth almost everywhere. Thus if Mx and M2 are two 3D points 
with projections (mi,mi',mi") and (m'2, m'^rn'a') respectively. Then if ||Mi - M2|| < e, 
then (m'2, m^, m'j') lie in the vicinity of (mi, m'{, m'"). 

We employ the continuity constraint in growing a surface around the known matched 
points. The algorithm is outlined in Algorithm 4. The idea of the algorithm is search for 
new matches nearby the known ones. Search windows are constructed around the known 
triplet of match. A similarity measure (Eq. 2.6) and epipolar constraint (Eq. 2.3) have 
been used to match new points inside the search window. The size of the search window 
is selected to be half the distance between successive patterns projected in the scene. This 
choice of window size ensures minimum overlapping scan of the entire scene. Localizing the 
search in small windows speeds up the search process and eliminates false matches arise from 
repetitive texture in the scene. 

At this stage, we have a dense set of triplets of match points (A = AilJAelJAc)- 
Using the camera parameters, we reconstruct the 3D correspondence of the matched points 
[5]. The obtained 3D data could be represented in several formats depending on the user's 
needs. We can fit a surface to the data and then generate different views to that surface. 
Range images could be generated by projecting the 3D data into any of the three cameras 
and decoding the depth of each point into grey level. In our case, we are interesting in 
generating the cyclopean view, defined in the introduction section. Therefore, we project 
the data into the cyclopean camera and encode the depth of each point1 as grey level. The 
cyclopean image is denoted by Ic, which is a 2D array of predefined dimensions. The entries 
of the array are normalized between [0-255]. However, we assign the value <f> for points that 
do not have 3D correspondence in A. These empty points are filled using a filling algorithm 
described in the following section. 

2.4 Stage IV: Filling and Smoothing 
The filling algorithm is another implementation of the continuity constraint. However, it is 
much faster than the surface growing implementation. The filling algorithm is applied to 
2D data and it does not perform intensive computation functions. Algorithm 5 outlines the 
filling algorithm. The filling technique assigns to each empty entry of Ic the mean value of 
its non empty neighbors. The filling process is followed by a low pass filtering operation to 
smooth out the final cyclopean view If. 

2.5 Experimental Results 

The previous approach has been used to reconstruct several different realistic scenes. Va- 
rieties of real object with different surface characteristics and sizes have been placed at 
different distances from the system. Some results are shown in Fig. 2.7. Fig. 2.7 illustrates 
the different stages of the reconstruction procedure as follows: 

• Part (a) shows the original image of the scene, 
LIt is the z-coordinate of our system coordinate system. 
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Algorithm 4 An outline of the surface growing algorithm  
Ac = * 
for all m = (m#, m", m'") £ (A! \J Ae) do 

Let R', R", R" be N x N search windows centered around m', m", m'", 
for all p' £ R do 

Z = #, 
for allp",p'"eR",R"do 

Letp = (p',p",p'"), 
if Epipolar(p) and Similarity(p) then 

Z = Z(Jp, 
end if 

end for 
Let N = Cardinality {2), 
if TV == 1 then 

AC = AC(JZ, 
else if N > 1 then 

Determine z £ Z that maximize the similarity score, 
Ac = Ac(Jz, 

end if 
end for 

end for 

Algorithm 5 An outline of the filling algorithm 
for all (r, c) £ Ic do 

if Ic(r, c) = ^ then 
Let R be 7 x 7 window centered around (r, c), 
N = 0, Mean = 0, 
for all (i,j) £ Ado 

iflc(i,j) ^ 0 then 
iV = N + l, 
Mean = Mean + Ic(i, j), 

end if 
end for 
Ic(r,c) = ^p, 

end if 
end for 
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• Part (b) shows the extracted line segments in that scene, 

• Part (c) shows the matched points of the structured light and the edge-based stereo, , 

• Part (d) shows the total matched points obtained after the surface growing, 

• Part (e) shows the final reconstruction a range image, 

• Part (f) shows the final reconstruction as a mesh. 

The scene in Fig. 2.7 composed of a statue, two boxes and a curtain. The statue has 
a smooth surface without texture and with very few edges. This type of object cannot be 
reconstructed with an edge-based, area-based stereo or even an integration between them. 
The results show how the system overcomes this problem by using the structured light. 
The system reconstructs the artificial features introduced by the pattern generator and use 
them to guide an area-based stereo technique. The edge-based stereo is used to reconstruct 
the actual edges and thus determines the discontinuity of the object's surface. The two 
boxes have long edges and an edge-based stereo works accurately in this case. However, to 
reconstruct the inner surface of this object, an area-based stereo is needed. As the object 
does not show enough texture to distinguish between its points, reconstructing more points 
inside the inner surface is needed to avoid the failure of area-based stereo technique. Thus, 
the structured light is used to support the area-based technique. 
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Figure 2.7: The reconstruction results at different stages (a) The original image I. (b) The 
extracted line segments Sr, (c) The matched edges before surface growing Ai |J Ae, (d) The 
matched points after surface growing A, (e) The cyclopean view as a range image, (f) The 
cyclopean view as a mesh If 23 



Chapter 3 

Reconstruction From A sequence of 
Images 

One of the most researched topics in computer vision involves reconstructing the shape of a 
3D scene from one to several images. Several different approaches have been formulated to 
solve this problem. The stereo approach, which has been modeled after the human vision 
system, has been by far the most widely used. Stereo techniques [12] find points in two 
or more input images that correspond to the same point in the scene (the correspondence 
problem). Then the depth of the scene point is determined using knowledge of the camera 
locations and triangulation (the depth estimation problem). Unfortunately, stereo is difficult 
to apply to images taken from arbitrary viewpoints. This is a two-sided problem. If the input 
viewpoints are far apart, then corresponding image points are hard to find automatically. 
On the other hand, if the viewpoints are close together, then small measurement errors result 
in large errors in the calculated depths. Furthermore, stereo produces a 2D depth map and 
integrating many such maps into a true 3D model is a challenging problem [29]. As a result, 
stereo is subject to several limitations. In an attempt to depart from the problems and 
limitations of stereo, different or variant approaches have been formulated. 

Seitz and Dyer [36] have presented Voxel Coloring, a method that represents volume as 
a discrete collection of small cubes called voxels. Voxel Coloring uses the assumption of 
Lambertian surfaces and produces a color-consistent set of voxels to represent 3D objects. 
However in order to treat occlusion, several restrictions are imposed on the locations of the 
cameras. 

A variation of stereo that resembles Voxel Coloring has been developed by Roy and 
Cox [33]. By projecting discrete 3D grid points into an arbitrary number of images, they 
collect color variance statistics. They impose a smoothness constraint both along and across 
epipolar lines. Their algorithm produces better reconstruction than conventional stereo. 
However, a major shortcoming is that the algorithm does not model occlusion. 

Faugeras and Keriven [13] have used a variational principle that must be satisfied by the 
surfaces of the objects in the scene to deduce a set of partial differential equations. A level 
set formulation of these PDE's is used to deform an initial set of surfaces to move towards the 
objects to be detected. Their method can both handle an arbitrary number of images and 
also deal with occlusion. However, it is unclear whether or not their method will converge 
for every condition. Although they have produced some impressive reconstructions, they did 
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not provide runtime and memory statistics. Therefore we do not know if their method is 
very practical for reconstruction in terms of processing time and memory usage. 

Like Voxel Coloring [36] of Seitz and Dyer, space carving [23] uses the idea of volumetric 
representation of shape and Lambertian assumption for surfaces. The main advantage of 
space carving over Voxel Coloring is that Voxel Coloring imposes constraints on camera 
locations while space carving does not. 

We have developed a mechanism for object reconstruction from a sequence of images 
based on Space Carving [36]. The idea is to create a system that is capable of getting images 
of the object from different viewpoints. The system receives as input from the user the 
number of images it needs to acquire and the rotation angle it has to perform between the 
views. At the same time, the system should keep track of the camera parameters at each 
position, see Fig. 3.1. Typically, space carving is a computationally intensive algorithm. 
Reconstruction using this method has been shown to take a considerable amount of time (20 
minutes or more). In order to reduce the reconstruction time, we develop a parallel version 
of space carving. The output of space carving is an unformated cloud of 3D points. In order 
to display the created 3D model on an existing 3D graphics software, we convert the output 
of space carving to an OOGL (Object Oriented Graphics Library) file. 
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Figure 3.1: Overview of the reconstruction technique. 
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In the follwoing, we describe the theory and the implementation details of the approach. 

3.1 Theory of Space Carving 

Image formation is typically achieved by projecting a 3D shape onto a two-dimensional plane. 
In 3D object reconstruction, we attempt to achieve the reverse process of image formation 
by regenerating a 3D shape from various 2D projections. However, there is not a one-to-one 
relation between 3D shapes and their projections. Several 3D shapes can have the same 2D 
projections. As an illustration, a sphere and a cylinder can all have the same 2D projections 
from certain viewpoints. This ambiguity can be resolved by using more 2D projections to 
estimate a 3D shape. Space carving [23] attempts to produce the maximal 3D shape that is 
consistent with all the images. 

Space carving starts with an initial volume, V, that includes the scene to be reconstructed. 
This 3D space is then discretized into a set of voxels. The idea is to successively carve 
(remove) some voxels until the final 3D shape, V*, agrees with all the input images. 

Each voxel in the initial volume is projected back to the different images using their 
respective projection matrices. To decide whether a voxel should be carved or not, the idea 
of color-consistency is used. We assume a Lambertian model for the surface of the object. 
Under this model, light reflected from a single point on the surface of the object has the 
same intensity in all directions. Therefore, for a voxel to belong to the surface of the object, 
it must have the same color intensity for all its projections to the different images provided. 
Voxels that are inconsistent with a single color, are viewed as free space in which different 
light rays intersect. By removing all color-inconsistent voxels, we are able to approximate a 
maximal photo-consistent shape that is defined by all the input images. The basic idea of 
space carving is illustrated in Figure 3.2. Three input images are used to generate the 3D 
model of the shape shown in the images. Voxels that project on the input images to pixels 
of similar color are kept and assigned that color. Voxels that project on the input images to 
pixels of different colors are removed. 

3.2 Algorithm 

Although the general idea in space carving is straightforward, modeling an algorithm to 
provide the desired results is not an easy task as the problem of occlusion must be treated. 
Given N input images and their respective projection matrices, the algorithm must be able 
to guarantee convergence to the maximal photo-consistent shape. 

Let us start by defining an arbitrary volume Vthat contains the object. Fmust be dis- 
cretized into a finite collection of voxels vi,v2,...,vn. Next, we need to determine the voxels 
on the surface of V. These voxels are the ones that can be visible to the different images at 
this point. This step is called visibility computation and consists on finding the voxels that 
can be visible to the images and not occluded by other voxels. Once we have computed the 
set of visible voxels, Vis(V), each voxel, Vi e Vis(V), is projected back to the input images 
to see if its color is consistent in all the different images where «j is seen. If the color is con- 
sistent, then the voxel is kept. Otherwise, it is carved. After all voxels on Vis(V) have been 
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Figure 3.2: ßasz'c idea 0/ space carving. Voxels are projected to the input images using their 
respective projection matrices. Gl, C2 and C3 represent the optical centers of the three 
cameras, (a) Consistent voxels are assigned the color of their projections, (b) Inconsistent 
voxels are removed from the volume. 

tested, we update the volume V, which still contains the maximal photo-consistent shape. 
Once again, we compute the new set of voxels on the surface of the updated volume V and 
test all these visible voxels. This process is repeated until no more voxels are carved away 
and volume V remains unchanged. The final volume V has the maximal photo-consistent 
shape. The different steps of the algorithm just described are outlined below. 

Space carving Algorithm. 
Step 1: Initialize V to be a superset of the scene and discretize V. 
Step 2: 

• Determine the set of voxels Vis(V) on the surface of V. 
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• Project each voxel v on Vis(V) to the different images where v is visible. 

• Determine the photo-consistency of each voxel v on Vis(V). 

Step 3: If no non-photoconsistent voxel is found, set V* — Fand terminate. Otherwise, set 
V — V- {non-photoconsistent w's} and return to Step 2. 

The most challenging task in this algorithm is Step 2. In this step, we must be able to 
compute the set of voxels that can be visible to the cameras each time we update the volume 
V by removing inconsistent voxels. Typically, visible voxels are on the surface of V and 
occlude other voxels. When a visible voxel is removed from the volume V, other voxels that 
it occluded now become visible. It is essential to keep track of voxels' visibility in a way that 
can be updated efficiently. This is achieved by implementing the space carving algorithm in 
a multi-sweep fashion. 

3.2.1    Multi-Sweep Implementation 

The multi-sweep implementation of space carving [23] consists of sweeping a plane through 
the scene volume, testing the visibility of the voxels on that plane and then determining the 
photo-consistency of the visible voxels. As we move the plane along a sweep direction, only 
images from cameras that are directed toward the sweep direction and that overlook the 
current plane, are used for photo-consistency check of the voxels on the plane. The plane- 
sweep technique can be summarized into two rules: (1) we only consider voxels on a similar 
plane as we move this plane along a specific direction, (2) we only use images from cameras 
that are located on the "front" side (i.e. side where cameras are directed towards the scene 
volume) of the plane to test the voxels for photo-consistency. These rules will guarantee 
that voxels are always tested from closer to further viewpoints of the cameras along a sweep 
direction. All occlusion relations are therefore captured. Typically, if a voxel p occludes a 
voxel q from a camera C, then the sweep guarantees that p will be always visited before q. 

In the multi-sweep implementation, space carving is arranged to perform several passes 
until no photo-inconsistent voxels are found. Each pass consists of sweeping a plane through 
the scene volume in six directions while testing the voxels on the plane. Sweeping is per- 
formed in increasing x-coordinate, increasing y-coordinate, increasing z-coordinate, decreas- 
ing x-coordinate, decreasing y-coordinate and decreasing z-coordinate directions. Multiple 
sweeps rather than a single sweep are necessary in each pass of the algorithm in order to 
guarantee that: (i) every image is used for photo-consistency check (if a camera, directed 
toward the object, is located past the last plane through the scene volume along a spe- 
cific sweep direction, then its image will never be used for photo-consistency check in that 
sweep); (ii) occlusion relations are further treated for voxels that lie on the same plane along 
a particular sweep direction by changing the sweep direction. 

To test visibility of voxels on the plane during a sweep, we compute the equation of the 
optical ray passing through each voxel for each camera under consideration. If an uncarved 
voxel intersects the optical ray of a camera to a particular voxel being checked for visibility, 
then the latter voxel is declared not visible (i.e. occluded) to the camera. Otherwise, the 
voxel is declared visible and is checked for photo-consistency on the entire set of images 
on which it is visible. The multi-sweep algorithm allows us to visit voxels in an order that 
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makes visual information updates more efficient. To decide whether a voxel should be carved 
or not, we base our decision on photo-consistency. Each voxel is projected to the different 
images on which it is visible. The standard deviation of the intensities of the pixels the 
voxel projects to, is used to determine whether the voxel should be carved or not. If the 
standard deviation is above a certain threshold, the voxel is declared photo-inconsistent and 
it is carved. Otherwise, the voxel is declared photo-consistent and it is kept. 

3.3 Image Pre-Processing 

Space carving [23] reconstructs 3-D shape by removing photo-inconsistent voxels from a 
chosen initial volume that includes the object of interest. Captured images of the object 
include both the object and the background. In general, space carving keeps all the photo- 
consistent voxels to form the maximal photo-consistent shape. Some voxels that project to 
the background may be consistent with a single color, and therefore the reconstructed shape 
will include both object voxels and background voxels. If we are only interested in recovering 
the shape of a particular object, background voxels that are included in the final volume 
should be removed as well. 

In order to ensure that these background voxels are never deemed consistent or left uncar- 
ved, several methods can be used. One method would be physically to alter the background 
of the object (for example, by placing cardboards of different color behind the object) during 
capture of the images. Another method would be to use a background with a homogeneous 
color easily differentiable from the object being reconstructed. The images can then be 
segmented to remove the background by applying some image processing algorithms. We 
choose the latter approach. The object to reconstruct is typically placed behind a black 
background. The background is then removed by thresholding the images of the object. 
Figure 3.3 shows a few captured images of a reindeer piggy bank and the resulting images 
after thresholding was applied to remove the background. 

3.4 Parallel Implementation 

To implement the space carving algorithm, we use the C language. Each voxel in the initial 
volume is represented by its center (x, y, z coordinates), its color and a flag that shows 
whether the voxel is existent or has been carved away. The space carving program ends 
when no photo-inconsistent voxel is found (i.e. no voxel is carved). The final output file 
includes only the center and color of the voxels that have not been carved or removed. The 
computationally intense program of space carving typically requires a lot of processing time 
as we have to perform multiple sweeps, in which every voxel on the plane has to be tested 
for visibility and then for photo-consistency on all the images on which the voxel is visible. 
In order to speed program execution, we develop a parallel version of space carving to run 
on the 24-processor Onyx R10000 supercomputer. We take advantage of the fact that no 
occlusion relation is assumed for the voxels on the same plane during a sweep. Therefore, 
visibility information can be computed independently for all the voxels on the same plane. 
The task of processing (computing visibility, and then testing for photo-consistency) every 
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Figure 3.3: Background segmentation results using thresholding of a few reindeer piggy bank 
images. 

voxel on the same plane is distributed among all the available processors in our parallel 
implementation of space carving. We accomplish this by using Pragma compiler directives 
for parallel code execution in C. 

3.5    Experimental Results 

To evaluate the performance of our 3D reconstruction system, we tested the program on 
several objects. For all the different experiments, we used grayscale images. We also used 
a 20% standard deviation threshold of the grayscale values to determine whether or not 
the voxels should be declared photo-inconsistent and consequently carved. This relatively 
high threshold was chosen in order to compensate for illumination effects and errors in 
calibration. In all experiments, the program was run on the Onyx R10000 supercomputer 
using 20 processors. 

In the first experiment, we captured 36 images of the toy Barney at 10-degree angle 
increments in order to generate a complete view of the object. The initial volume was 
discretized into 70x70x70 voxels for a total of 343,000 voxels. The object is reconstructed 
after five passes of the space carving algorithm, and a total time of 1 minute and 5.98 
seconds. The final volume contained 4,228 voxels. Figure 3.4 shows a few input images and 
the reconstructed result. 

As we can see, the shape of Barney was reconstructed quite accurately, although some 
fine details of the toy's texture were lost. This can be explained by the fact that the initial 
volume was not discretized at a high enough resolution. 

Discretizing the initial scene volume into a larger number of voxels, which would result in 
a decrease of the size of the voxels, should allow us to capture finer details. To prove this, we 
ran the program with the scene volume initialized at 150x150x150 voxels (3,375,000 voxels), 
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Figure 3.4: A few examples of the images captured for the Barney toy reconstruction. Re- 
constructed model with a volume space initialized at 70x70x70 is also shown. 

and then at 270x270x270 voxels (19,683,000 voxels). Table 3.1 shows us the execution time 
and the final number of voxels at the different discretization levels. 

As we can see from Figure ?? and Figure ??, more details are captured in our 3D 
reconstructed model as the volume resolution increases. However, there is a price to pay. 
Finer reconstruction comes at the expenses of processing time and memory. 

Next, we attempted to judge the improvement in reducing the execution time gained 
by parallelizing space carving. All the reconstuctions mentioned above were conducted in 
a parallel mode using 20 processors.   Using the thirty-six images of the toy Barney that 
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Table 3.1:   Reconstruction statistics for the Barney toy with volume space initialized at 
70x70x70, 150x150x150 and 270x270x270 voxels. 

Number 
of input 
images 

Volume 
Space 

Initial 
number 
of voxels 

Final 
number 
of voxels 

Processing time 

36 70x70x70 343,000 4,228 lmn 5.98secs 
36 150x150x150 3,375,000 21,054 17mns 20.23secs 
36 270x270x270 19,683,000 68,008 2hrs 59mns 47.02secs 

we captured in the previous experiment, we performed the reconstruction using a single 
processor (serial mode) with volume space initialized at 100x100x100. We also performed 
the same reconstruction using 5, 10 and 15 processors in order to analyze the program 
execution speed gained by using more processors. The results are tabulated in Table 3.2. 

Table 3.2: Space carving program execution times using various numbers of processors. 

Number of 
Processors 

Number of 
Images 

Initial 
number 
of voxels 

Processing time 

1 36 1,000,000 37mns 18.38secs 
5 36 1,000,000 8mns 22.51secs 
10 36 1,000,000 4mns 33.08secs 
15 36 1,000,000 3mns 12.16secs 
20 36 1,000,000 2mns 43.28secs 

As we can see from these results, there is a significant advantage to our parallel imple- 
mentation of space carving. Running the program serially (on a single processor) takes a 
considerable amount of time. Our parallel version of space carving allows a significant re- 
duction in program execution time by distributing the workload to n processors. By using 
a larger number of processors in the reconstruction, we can considerably scale down the 
program execution time. 

In all experiments, calibrated images were successfully acquired through the setup. From 
the images, the space carving program succeeded in reconstructing the shape of the objects 
regardless of the positions of the camera. The 3D models were generated in reasonable 
amount of times on the Onyx R10000 supercomputer. The program could be easily scaled 
up to run on more processors to further speed up its execution time to the capabilities of 
a more powerful computing machine. In order to provide the user with a visual measure of 
the quality of the reconstructions, all the reconstructed models were displayed on the Imersa 
Desk, a stereo visualization screen at the computer vision and Image Processing (CVIP) 
laboratory. 
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Chapter 4 

The CardEye: A Trinocular Active 
Vision system 

Active vision employs controlled changes in the acquisition process to obtain better infor- 
mation for the solution of computational vision problems. Early work on active vision can 
be attributed to Tenenbaum, who introduced the term "image inadequacy" to describe the 
limitations of the static imaging framework for recovery problems [42]. Examples of active 
vision can be found in the work of Bajcsy, Ballard, Aloimonos, and Abbott and Ahuja [1,6]. 

The active vision area has been enriched by the design and construction of a variety 
of active vision platforms and the use of different active vision techniques to improve the 
machine perception. For references and descriptions see [8, 45]. Noteworthy are Yorick 
(University of Oxford) [37], Rochester head (University of Rochester) [7], FOVEA (University 
of Texas) [22], PennEyes (University of Pennsylvania) [28], BiSight (HelpMate Robotics Inc.) 
[47] and INRIA head (INRIA, France) [46]. Many of these are one-of-a-kind prototypes, using 
only two cameras to mimic some of the components and the functionality of the human vision 
system. 

The CardEye system is an attempt to mimic the functionality of the human vision system 
without being restricted to its components. Thus, CardEye utilizes more sensors than human 
beings, which improves the resultant performance. Specifically, the system has three cameras 
to improve the recovery process, and the system uses an active lighting device to assist in 
surface reconstruction process. Moreover, the system employs active vision techniques to 
improve the machine perception. The system has the basic mechanical properties of active 
vision platforms - pan, tilt, roll, focus, zoom, aperture, vergence and baseline. The flexibility 
of the system and the availability of different sensors will assist in solving many problems 
in active vision research. In this paper, we describe the architecture of the system and our 
ongoing research on its functionality. More details can be found in [20]. 

4.1    The Mechanical Design 

The aim of the CardEye project is to build an active vision system using a trinocular head 
that can possess basic mechanical properties such as pan, tilt, roll, focus, zoom, aperture, ver- 
gence and baseline. Building a trinocular system with these properties adds more complexity 
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and redundancy to the system. To eliminate the redundancy, we assigned the mechanical 
properties to the system as a whole and not to each camera. As a consequence, the three 
cameras are coupled together to perform the same motion, to fixate to a point, or to change 
the baseline while a robotic arm, on which the camera assembly is mounted, provides the 
flexibility to pan, tilt, or roll. Of course, active lenses have the zoom and focus properties. 
The active lighting device consists of a laser generator, different diffractor filters mounted 
on a rotating drum, and a mounting mechanism that enables the device to change its orien- 
tation around the system vertical axis and to switch the filter. With the help of this device, 
structured-light techniques for surface reconstruction can be easily utilized in our system. 

A simulated design, shown in Fig. 4.1, has been used to test the coordination between 
the system parts, to justify the available degrees of freedom and to justify the solution of 
the system kinematics with different target locations. As shown in Fig. 4.1, the system 
consists of a trinocular head holding three cameras at equal distance from each other and 
an active lighting device mounted at the center of the trinocular head. The cameras can 
translate along their mounts to change the baseline distance. At the same time, the cameras 
can rotate towards each other to fixate to a point in space. This is known as the vergence 
property. The trinocular head is connected to a robotic arm with at least three segments and 
four joints - the base, elbow, shoulder and wrist. The base joint provides the pan property. 
The shoulder and elbow joints provide the tilt property. The wrist joint provides the roll 
property. 

Active 
Lighting 
Device 

The Shoulder: 6- 

The Elbow: 

The Base 

Approximated 
Optical Axis 

Trinocular 
Head 

Figure 4.1: CardEye simulated design (A trinocular head attached to three-segment robotic 
arm. 
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In contrast to some vision heads which are based on the isosceles right-angle model (e.g., 
[31]) to simplify the stereo matching process (but the mechanical difficulties of the alignment 
ofthat model are rather difficult to overcome), the CardEye's camera configuration mimics 
an important property of the human vision system, which is known as cyclopean view. It 
has been known for some time (Hering 1897, Ibn Al-Haytham around 1000) [21] that under 
normal viewing conditions, the world appears to us as seen from a virtual eye placed midway 
between the left and right eye positions. The geometry of this cyclopean eye is depicted in 
Fig. 4.2. As shown in the binocular system, the cyclopean eye/camera fixates to the same 
fixation point of the actual cameras. The optical axis of the cyclopean camera is the bisector 
of the optical axes of the real cameras. By analogy, the trinocular system is constructed as 
shown in the figure. 
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Point 
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Camera 3 

Figure 4.2: The cyclopean view in binocular and trinocular vision systems. 

The fixation process in the system is performed in two steps. The first step is to change 
the robotic arm joints to align the fixation point with the end-effector segment of the arm. 
The second step is to rotate and translate the cameras to fixate at a specific point. The 
fixation process is illustrated using a schematic diagram of the system (Fig. 4.3). As shown 
in the schematic diagram, the system parameters are denoted as follows: 

• t corresponds to the distance from a camera to the center of the head, 

• ß corresponds to the vergence angle, 

• (?i corresponds to the pan angle, 

• 62 and 03 correspond to the tilt angle, 

• 04 corresponds to the roll angle, 

• d is the distance along the fixation line between the fixation point and the cameras 
plane. 

The complete solution of the system kinematics is described next. 
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Figure 4.3: CardEye schematic diagram (The trinocular head attached to the end-effector 
of the 3-segment robotic arm. M is a target fixation point.) 

4.1.1    The System Kinematics 

The CardEye system consists of two parts, each is considered a manipulator by itself. The 
first manipulator is a three-link robotic arm that provides three degrees of freedom (pan, 
tilt and roll) similar to the human neck. The other manipulator is the trinocular head that 
provides the vergence property similar to the human eyes. It provides a variable baseline as 
well. We shall discuss the kinematics of each section separately. 

4.1.1.1    The Robotic Arm Kinematics 

The problem of inverse kinematics is posed as follows: given the position and the orientation 
of the end-effector of the manipulator, calculate all possible sets of joint angles which could 
be used to attain this given position and orientation. The solution to the inverse kinematics 
problem can be approached either numerically [32] or analytically [34]. The analytical ap- 
proaches [34] exploit the specific geometry of the manipulator and determine a closed-form 
expression of the solution. Therefore, we use the analytical method to solve the kinematics 
problem of the robotic arm. 

As shown in Fig. 4.4, let oa, ab and bM be the first, second and third arm segments, 
respectively and 0i, 02 and 03 the base, shoulder and elbow angles, respectively. Let m be 
the projection of M = (x, y, z) in the x - z plane, hence the triangle oem is a right-angle 
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Figure 4.4: Inverse kinematics for three-link arm. 

triangle and thus the angle 6\ can be expressed as: 

9\ = — tan_1(z/a:) (4.1) 

Before computing the shoulder and elbow angles, we test the existence of solutions. From 
the triangle abM we found that there are three cases. A unique solution will be extracted if 
l2 + l3 = r. There is no solution for the cases in which l2 + h > r. There are two solutions if 
l2 + lj < r2. The one shown in Fig. 4.4 is the "elbow down" solution. Another solution may 
be determined for the "elbow up" configuration where both links are above the vector aM. 
r can be computed using the triangle agf and afM. From the right angle triangle agf we 
get 

\af\ = Vx2 + z2 (4.2) 

From the right angle triangle afM we get, 

r2 = a;2 + (y_il)2 + ^2 (4.3) 

Assuming that a solution exists then r can be obtained from the right angle triangle acM 
as follows 

r2 = (l2 + hcos(93))
2 + (hsin(93))

2 (4.4) 

We could solve Eq. 4.4 and 4.3 for 03 using the inverse cosine function. However, it is better 
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to use the inverse tangent for numerical accuracy. Therefore, we proceed by computing 

COS   (03)     = 
r2 _ /2 _ 12 r      h    ^3 _ Q 

21 2'3 

sin (03)   =   ±y/l- cos2(03) = ±Vl - C2 = D 

03   =   tan-1 {D/C) (4.5) 

To determine 02, we define the auxiliary angle <j) in the figure.  By inspection of the right 
angle triangles acM and afM, we obtain 

% =tan_1| 
y-k 

\Jx2 + z 
tan      {- —; 77TTJ- 

l2 + hcos(03) 
(4.6) 

4.1.1.2    The Trinocular Head Kinematics 

The three cameras of the trinocular head have the capability to converge towards a point 
along a line perpendicular to the plane that passes through the midpoint of the trinocular 
head. This line is known as the fixation line. The fixation line in the system represents 
the trajectory of the fixation points of the cameras. Fig. 4.5 shows a schematic diagram of 
the trinocular head. The default orientation of the three cameras is parallel to the fixation 
line. The three cameras converge to the fixation line by angle of rotation ß - tm~l(t/d). 

Given a target object (accordingly a fixation point), the optimal value oft is determined 

Arm end-effector 

Figure 4.5: The trinocular head kinematics. 

by the sensor planning module (described later) to fulfill some system requirements. Once t 
is known, the angle of rotation for the three cameras, ß, can be computed. 
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4.1.2    System Integration 

In the current phase of the system, the head has been fully implemented, while the robotic 
arm is left for the next phase. Fig. 4.6 shows the CardEye system and the cabinet that 
encompasses all the digital circuitry interfacing the system to a network of high-end work- 
stations, PCs, an Onyx R10000 supercomputer and an ImmersaDesk visualization screen. 

Figure 4.6: A picture of the CardEye system and the control circuitry cabinet. 

4.2    The System Functionality 

An overview of CardEye functionalities is given in Fig. 4.7. The figure shows four main 
modules: the sensor planning, camera calibration, surface reconstruction, and decision mak- 
ing. The fourth function, decision making, uses the output of the reconstruction module to 
specify the next fixation point of the system. The application for which CardEye will be 
used is the basis for the decision. For each application, we define a mode of operation such 
as 3D model building, object tracking, object recognition and navigation. In this work, we 
briefly describe the functionality of the system for 3D object reconstruction. To achieve this 
task, several features of the system are novel: 

• a sensor planning module [24] that solves for system parameters that maximize the 
effectiveness of the reconstruction process, 
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a camera calibration technique [2] that can capture the variation of the camera model 
parameters as continuous functions of lens settings (zoom, focus and aperture), 

a multi-stage reconstruction approach [19, 18] that combines structured-light, edge- 
based stereo and area-based stereo reconstruction techniques. 

0's. vergence and zoom/locus 

Surface Reconstruction 

'Estimated Position (x, y, z) 

IE 
Decision Making (\ 

Robot 
Navigation 

Model 
Building 

Object 
Tracking 

Figure 4.7: The CardEye functionality. 

4.2.1    Sensor Planning 

The sensor planning process [24] employs the fixation point, generated by the decision making 
process, to generate the sensor parameters (pan, tilt, roll, vergence, baseline, zoom and focus) 
satisfying different vision constraints (field of view, focus, disparity and overlap). 

The goal for the sensor planning component is to maximize the effectiveness of the 3D 
reconstruction algorithm from one frame. For effective reconstruction, the frames must 
display adequate depth information and have a fairly large overlap area. The two goals 
are in conflict. For more overlapped area, the converged cameras are to move closer, while 
better disparity content requires the cameras to move away from each other. Consequently, 
the algorithm solves for the translation between the cameras, t, that satisfies both goals to 
a certain extent. Moreover, the sensor planning algorithm makes sure that the target object 
is within the field of view of the head and in focus. As a result, the vergence angle, cameras' 
zoom and focus settings are determined. The interested reader is referred to [24],[25] for 
further details. 

40 



4.2.2 Zoom-lens Camera Calibration 

The CardEye uses three zoom-lens cameras, which need to be calibrated to know the camera 
model parameters at any lens setting (zoom and focus) as determined by the sensor planning 
module. Camera systems with automated zoom-lenses are inherently more useful than those 
with fixed-parameter (passive) lenses due to their flexibility and controllability. In such 
cameras, the image-formation process varies with the lens optical settings, thus many of the 
camera model parameters are non-linear functions of the lens settings. The calibration prob- 
lem of these cameras relies on formulating functions that describe the relationships between 
the camera model parameters and the lens settings. As opposed to passive cameras, this 
raises several challenges [49]. To solve this difficult task, we developed a neural framework [2] 
based on our novel neurocalibration approach [3], which cast the classical geometric (passive) 
camera calibration problem into a learning problem of a multi-layered feedforward neural 
network (MLFN). This framework consists of a number of MLFNs learning concurrently, 
independently and cooperatively, to capture the variations of model parameters across lens 
settings. 
This framework offers a number of advantages over other techniques (e.g., [49],[38]): it can 
capture complex variations in the camera model parameters, both intrinsic and extrinsic (as 
opposed to polynomials in [49]); it can consider any number/combination of lens control 
parameters, e.g., zoom, focus and/or aperture; all of the model parameters are fitted to 
the calibration data in a global optimization stage at the same time while minimizing the 
calibration error. 

4.2.3 Surface Reconstruction 

Due to the different characteristics of object surfaces in the environment, a single recovery 
technique does not work well in all situations, and thus we employ multiple recovery tech- 
niques to reconstruct a 3D map for the same scene [19], that was described in Chapter 2. 
This technique integrates edge-based stereo and area-based stereo to combine the accuracy 
of the former and the richness of the latter and employs structured light to reconstruct 
featureless and smooth objects that cannot be properly handled with edge- or area-based 
stereo. The integration is performed by reconstructing the actual and induced edges in 
the scene using the geometrical constraints of trinocular vision [18], followed by applying 
a correlation-based technique to fill the gaps between the reconstructed features. Fig4.8 
shows the reconstruction results of some objects. Simple objects (e.g., boxes) are, also, used 
to evaluate the reconstruction process and the rms error between the reconstructed object 
dimensions and the ground truth values is within 5 millimeters. More details about the 
approach and performance analysis of the system can be found in [20]. 
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Figure 4.8: Reconstruction results from the CardEye: original images are shown in the first 
row and the cyclopean view of the reconstructions after adding texture are shown in the 
second row. 
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